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Methodological aspects of calculations of the thermodynamic
factor in interdiffusion
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Abstract. Self-diffusion can be studied in binary systems for which appropriate radioisotopes for both
constituents of the alloy are available. With respect to the Fe-Al system suitable radioisotopes are available
for the Fe component (e.g. 59Fe) but not for Al. In the framework of the Boltzmann-Matano method further
insight into the diffusion behaviour of Fe-Al intermetallics can be gained from interdiffusion experiments.
The interdiffusion coefficient is related via the modified Darken equation to the tracer diffusivities of the
constituents. The thermodynamic factor Φ entering the Darken equation is proportional to the second
derivative of the Gibbs free energy, G, of the alloy on the molar fraction of one of the components. These
relations can be used to deduce the tracer diffusivity of Al provided that the tracer diffusivity of Fe, the
interdiffusion coefficient and the thermodynamic factor are known. The mixing energy, which enters G,
could be calculated on the basis of the thermodynamical data or by means of non-empirical calculations.
We suggest for the latter ab initio calculations the use of modern non-empirical methods.

PACS. 64.70.-p Specific phase transitions – 65.50.+m Thermodynamic properties and entropy – 66.30.-h
Diffusion in solids

Intermetallic compounds or ordered alloys have re-
cently attracted much attention as structural materials
for high-temperature applications. Diffusion is ubiquitus
at elevated temperatures and it is promoted by atomic
defects. A knowledge of diffusion and of defect properties
is therefore of great interest for the production of these
materials and for their use in technological applications.
The increasing interest in aluminides due to their techno-
logical importance has recently triggered studies on Fe-Al
intermetallics using Mössbauer spectroscopy (MBS) [1]
and positron annihilation spectroscopy (PAS) [2–4]. PAS
studies provide information about the formation of ther-
mal vacancies. Apart from well known geometric factors,
the self-diffusivity is the product of the thermal vacancy
concentration times the mobility of the vacancies. A com-
bination of both sets of experiments can be used to deduce
the mobility of vacancies.

Some diffusion data on iron-aluminium alloys are avail-
able from the work of Larikov [5] (see also the data col-
lection [6]). These data are limited to fairly high tem-
peratures above 1173 K. This implies that for Fe-rich
alloys diffusion has been studied in the disordered A2-
structure only. Any influence of the state of order and
of order-disorder transitions on the diffusion behaviour is
unknown. Such information requires diffusion studies over
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much wider temperature ranges. Recently, data on the dif-
fusion of Fe and In-isotopes in a wide temperature range
have been published [7].

It has been demonstrated that MBS can provide some
insight into the atomic mechanism of Fe-atom diffusion
in iron-aluminides [1]. However, MBS is not a routine
method for diffusion studies. It is limited to a fairly narrow
temperature window within which the jump time of Fe-
atoms is comparable to the life time of the Mössbauer level
of the Fe-isotope. MBS is neither able to provide informa-
tion about Fe-diffusion over a wide temperature range nor
can it provide any information about Al-diffusion. This is
why the experimental work on diffusion in FeAl has to be
complemented by theoretical research.

The progress in electronic theory allows quantitative
predictions of the simple crystal structures of elements,
and some binary and ternary compounds, by calculating
the ground state energy of these systems (see for example
[8,9]). The ability to make accurate predictions has been
accompanied by the development of simple, yet reliable
nearly free electron or tight-binding models which have
provided physical insight into the origin of bonding
and structure at the atomistic level (see, for example
Refs. [10,11]). The properties of some 3d-transition metal
aluminides with equiatomic compositions have been
studied in the framework of the local-density-functional
(LDF) theory with the full-potential linearized augmented
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plane-wave method to solve the LDF equations[12]. The
energies of vacancy formation at the Fe and Al sublattices
were calculated (see also Refs. [13,14]).

Diffusivities in a homogeneous alloy can be determined
with high accuracy using the radiotracer method. In bi-
nary systems for which appropriate radioisotopes for both
constituents of the alloy are available, comprehensive in-
formation about the diffusion behaviour can be obtained,
if both tracer diffusivities are measured in homogeneous
alloys of various compositions as functions of temperature.
With respect to the Fe-Al system, appropriate and inex-
pensive radioisotopes are available for the Fe component
(e.g. 59Fe) but not for Al. Further insight into the diffusion
behaviour of Fe-Al intermetallics can also be gained from
interdiffusion experiments. In an interdiffusion experiment
diffusion couples are formed which initially consist of two
homogeneous alloys of different compositions. The compo-
sition depth distribution which develops during a diffusion
anneal is determined by electron microprobe analysis and
evaluated using, e.g., the Boltzmann-Matano method. In
this way interdiffusion coefficients D̃ are determined. The
interdiffusion coefficient is related via the so-called modi-
fied Darken equation [15]

D̃ = (D∗AcB +D∗BcA)ΦS (1)

to the tracer diffusivities of the constituents. Here ci de-
note molar fractions, Φ the thermodynamic factor and S
the vacancy wind factor introduced by Manning [16]. S
is usually close to unity. The thermodynamic factor is re-
lated via

Φ =
cAcB

RT

∂2G

∂c2i
(2)

to the Gibbs free energy of the alloy. G is equal to
U − TS + pΩ at pressure p and a cell volume Ω. U is the
mixing energy, and S is the entropy.

The free energy G may be written in the form

G = cAGA + cBGB +∆G(cA, cB), (3)

where ∆G is the free energy of mixing. This value de-
pends nonlinearly on the molar fractions of components
and may be presented by means of different models for
solid solutions: regular solid solutions, subregular solid so-
lutions, etc. ∆G contains the internal energy of mixing
∆U and the entropy of mixing. Thus Φ is temperature-
and concentration-dependent and may also be a function
of the state of order of the phases studied. In any case
using the representation (3) it is easy to understand that
only ∆G contributes the thermodynamic factor Φ. Thus
Φ is temperature- and concentration-dependent and may
also be a function of the state of order of the phases stud-
ied.

The free energy of mixing may be calculated on the ba-
sis of the thermodynamical data (see for example Ref. [17])
or by means of non-empirical calculations. In reference [17]

the free energy of mixing is given in the form

∆G = Ge +Gs. (4)

In (4)

Ge = LcFecAl,

L = A(T ) +B(T )(cAl − cFe) + C(T )(cAl − cFe)
2,

Gs = RT [cFeln cFe + cAlln cAl]. (5)

Here A(T ) = −139114.628+24.95T ,B(T ) = −58464.74+
42.67T , and C(T ) = −14493.54 + 6.938T . All values are
given in J/mole. Making use of equation (5) and of cFe +
cAl = 1 we obtain the following expression for Φ

Φ =
cAcB

RT

[
∂2Ge

∂c2Fe
+
∂2Gs

∂c2Fe

]
, (6)

where

∂2Ge

∂c2Fe
= −[2A(T ) + 6B(T ) + 10C(T )]

+ cFe[12B(T ) + 48C(T )]− c2Fe48C(T ),

∂2Gs

∂c2Fe
= RT

[
1

cFe
+

1

1− cFe

]
. (7)

We use the data available from [17] to calculate Φ for
disordered Fe-Al solid solutions. Equation (7) presents
Φ(cFe, T ) in analytical form and, for example, for
T = 1475 K and cFe = 0.735 the thermodynamic factor
is equal to 1.0035. We may check the consistency of
this result with the well-known data of behaviour of Φ
for different systems. As it was discussed in [15,18] Φ
is larger than unity for phases with negative deviations
from ideality and smaller than unity in the opposite
case. Negative deviations and condition Φ > 1 are
expected for systems with the tendency to order or with
order. Thus, our result based on the CALPHAD data
reflects the atractive interaction between constituents in
Fe-Al. The condition Φ > 1 is preserved in the range
0.5 ≤ cFe ≤ 0.75 for temperatures 700 K ≤ T ≤ 1450 K.
This fact is illustrated by Figure 1, where we show the
surface Φ(cFe, T ) in these temperature and concentration
intervals.

To calculate Φ(cFe, T ) for intermetallics FeAl and
Fe3Al we have to account for concentration and temper-
ature dependences of the long-range order parameters
which describe the state of order for these phases.
Unfortunately corresponding thermodynamic CALPHAD
data for this case are not available. Description of the
temperature dependences of the long-range order param-
eter (LRO) and of the free energy of ordering may be
done according to the static concentration wave (SCW)
theory [19]. The SCW method allows one to take into
account interatomic interactions at arbitrary distances.
It establishes the relation between the statistical theory
and the Landau-Lifshitz thermodynamical theory of
second order transformations in the ordering of alloys.
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Fig. 1. The thermodynamic factor Φ dependence on the tem-
perature (T , K) and on the concentration of iron for the dis-
ordered A2 alloy.

This method provides the possibility of predicting the
structure of the ordered phase if the pairwise interatomic
interactions are estimated. Thus SCW theory overcomes
several principal difficulties of the traditional theories of
ordering [20,21]. We combine the SCW theory with the
first-principles calculations of the interatomic interaction
and evaluate the above mentioned temperature depen-
dences as well as the temperature of the order-disorder
phase transformation.

Making use of the SCW theory the internal energy
of mixing of completely ordered phase U may be written
in terms of pairwise interactions

U =
1

2
V (0)c2 +

1

2

∑
s

γ2
sη

2
sV (ks). (8)

Here c is the mole fraction of the component A in the
ordered phase, V (ks) is the Fourier transform of the mix-
ing potential V (R) = VAA(R) + VBB(R)− 2VAB(R) that
is calculated in the superstructure reciprocal lattice vec-
tors ks

V (ks) =
∑
R

V (R)eiksR, (9)

ηs - are the long-range order parameters, that are de-
scribing the ordering in the superstructure, V (0) is just
the same as (9) but for ks = 0; γs are the structural
constants depending on the symmetry of the ordering
phase. Vectors ks pertain to the stars of vectors describ-
ing the superstructure. Summation in equation (9) is
produced over the stars of vectors satisfying the Lifshitz
criterion [22].

As an illustration of this technique we discuss the
case of CsCl-type (B2) superstructure. In this case
the vector ks that is responsible for the formation of

this phase from the disordered bcc solid solution is
ks = 2π/a(111). As shown in reference [19] γs = 1

2 for
this structure. The vector ks defines the site occupation
probabilities for the ordered phase that is stable with
respect to the formation of antiphase domains in an
alloy. The site occupation probability, n(R), for B2 FeAl
superstructure is

n(R) = c+
1

2
ηe2πi(x+y+z), (10)

where x, y, and z are the coordinates of the bcc lattice
sites. At c = 1

2 and η = 1 this equation describes the
completely ordered phase. With equation (9) for this ks
it is easy to obtain

V (ks) = −8V (R1) + 6V (R2) + 12V (R3)

− 24V (R4) + 8V (R5), (11)

and

V (0)=8V (R1)+6V (R2)+12V (R3)+24V (R4)+8V (R5).
(12)

Here we restricted ourselves to five coordination shells of
the Ising lattice. Now we can get the expression for the
stoichiometric composition of B2 phase energy in the form

U =
3

2
V (R2) + 3V (R3) + 2V (R5). (13)

It is obvious that this mixing energy in the ground state
depends only on the interaction potential between atoms
in such a binary phase. If this potential is known it is possi-
ble to calculate the temperature dependence of the long-
range order-parameter using the equation of the Bragg-
Williams (BW) type

ln

[
(1− c− 1/2η)(c− 1/2η)

(1− c+ 1/2η)(c+ 1/2η)

]
=
V (ks)

kT
η, (14)

and the temperature of the order-disorder phase transition

Tc = −
c(1− c)V (ks)

k
· (15)

Here k is the Boltzman constant. Substituting η(T )
dependence into equation (8) one can immediately obtain
the temperature dependence of the internal energy of
mixing.

Expression for the free energy of mixing ∆G (neglecting
of PΩ term) is

∆G =
1

2
V (0)c2 +

1

8
V (ks)η

2 +
1

2
kT [(c+

1

2
η)ln(c+

1

2
η)

+ (1− c−
1

2
η)ln(1− c−

1

2
η) + (c−

1

2
η)

× ln(c−
1

2
η) + (1− c+

1

2
η)ln(1− c+

1

2
η)] (16)

Differentiating ∆G twice with respect to concentration we
obtain Φ as a function of concentration and temperature.
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This dependence is included not only directly but also
from the dependence of LRO parameter, which is obvi-
ously included in Φ and has to be calculated for each tem-
perature and concentration from (14). The value of V (ks)
may be obtained from diffuse X-Ray scattering data as
discussed in reference [19] or may be calculated by means
of first-principles calculations.

These results allow us to make predictions of the tem-
perature dependences of the LRO parameter and of the
free energy of this phase. With the assumed Morse-type
potential form of the effective pair interaction (see, for
example [23])

V (R) = A− 2Be−λ(R−r0) +Be−2λ(R−r0), (17)

we obtain the potential of mixing. We may estimate pa-
rameters A, B, r0 and λ to write down U with these
parameters (see Eq. (13)) and to fit to the U vs. vol-
ume dependence calculated ab initio. Taking into account
equation (11) the value of V (ks) may be determined, that
gives us the temperature of phase transformation Tc. Di-
rect evaluation of V (ks) values from the U(Ω) dependence
is not obvious because V (0) and V (ks) enter equation (8)
in a symmetric form for the absolutely ordered B2-phase
in stoichiometric composition. Equation (8) for this case
has the form

U =
1

8
V (0) +

1

8
V (ks), (18)

that leads to the arbitrary evaluation of V (ks), and
the estimation of the transition temperature becomes
non-unique.

Using the obtained mixing potentials V (R) we may
calculate V (0) and V (ks), and we use these values for
calculations of the free energy of mixing (see Eq. (17) for
an example). This gives a direct opportunity for ab initio
calculations of the thermodynamic factor Φ.

We have suggested in this paper the possibility for
phenomenological and ab initio calculations of the ther-
modynamic factor in interdiffusion. We discussed also the
applicability of the effective potential approach based on
non-empirical calculations applied to the problem of eval-
uating the energetic parameters of the ordering process.
The scheme for calculation of the volume dependence of
the internal mixing energy was suggested and for simplic-
ity was illustrated by the example of B2-phase (FeAl). The
parameters of the effective potential may be estimated by
fitting to the mixing energy. The latter allows one to per-
form calculations of the temperature dependence of the
LRO parameter in the framework of static concentration
waves theory of Khachaturyan. In contradiction to the
traditional approaches for the description of the ordering
process, we do not evaluate the partial pair potentials in
our scheme. Using this formalism we have demonstrated
the principal possibility of the prediction of the temper-
ature of the order-disorder phase transition. The quality
of this prediction in the case of FeAl can be checked from
X-ray measurements of the diffuse scattering.
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